










In our study we examine the following: 
1. 
2. 
3. 

Effects on signal propagation in the time domain 
Frequency domain characteristics of the meander line 
Radiated emissions at different frequencies 

This paper is organized in the following way. 
Section I1 describes the geometry of the meander line 
under study. Sections 111, IV, V and VI briefly introduce 
the numerical techniques (3D-FDTD, ID-FDTD, FJZM, 
and MOM) used to analyze the meander line propagation 
characteristics. Section VI1 discusses the numerical 
results. 

11. DESCRIPTION OF THE DELAY LINE 
STRUCTURE 

The delay line considered for study is a meander 
(or serpentine) delay line. The geometry of the line is 
shown in Fig. 1. The delay line is composed of 8 meander 
segments and is designed to have a total length of 177 
mm. The adjacent segments are separated by 1 mm. Each 
line has a width of 1 mm. The traces are placed on a Imm 
thick dielectric material with relative permittivity 4.5 that 
has a ground plane on the other side. The characteristic 
impedance of the line is 71 ohms. The pulse source has a 
quasi-square (boxcar) pulse shape. The leading and falling 
edges of the pulse are approximated by gaussian functions 
with 200 ps rise and fall times. The full dwell time is 1 ns. 
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Fig. 1. Top view of the delay Line 

111. FINITE-DIFFERENCE TIME-DOMAIN 
METHOD (FDTD) 

The FDTD technique, as introduced by Yee [9], 
has been proven to be a convenient and effective tool for 
time-domain analysis of various electromagnetic 
scattering problems involving arbitrarily shaped objects. 
The method has been used by authors in electromagnetic 
pulse coupling [lo]. The FDTD method makes use of the 

increased power of today's computers to provide full 
time-domain solutions. The basis of the FDTD algorithm 
is the two time-domain Maxwell's curl equations. These 
equations are expressed in discrete form by means of 
central finite differencing. 

For uniform, isotropic and homogenous media 
Maxwell's curl equations are given as 

aH VXE=-,U- 
at 

where E, H, E, p, and (T are the electric field, magnetic 
field, permittivity, permeability, and conductivity, 
respectively. The central difference approximation is used 
on both the time and space fist-order partial 
differentiations in order to obtain discrete approximations, 
which gives [9] 

for H, and similar equations for the E, Ey, E, Hy and H, 
components. 

The permittivity and the permeability are set to 
the approximate values depending on the location of each 
field component. Half time steps indicate that E and H 
fields are alternately calculated in order to achieve central 
differences for the time derivatives. This results in six 
equations similar to the one given above. These equations 
define the E and H fields in the x, y and z directions. 
After calculating the time-domain E and H fields, the data 
are transformed into the frequency domain using a fast 
Fourier transform (FFT). 

The finite-difference algorithm requires that the 
time increment At, has a specific bound relative to the 
grid sizes Ax, Ay, Az. This bound is necessary to avoid 
numerical instabilities. The maximum time step that may 
be used, is limited by the stability restriction of the finite- 
difference equations, is given by; 

A t < -  -+-+- (4) 
vma Ax2 Ay2 Az2 
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where 
electromagnetic wave in the material being modeled. 

vmax = (l/p)*’’ is the maximum speed of the 

The computation region of the FDTD method 
must be limited in size. This region must be large enough 
to enclose the structure being modeled. Within the outer 
boundary, Maxwell’s equations are solved in their finite- 
difference form. However, these equations cannot be 
implemented along their outer boundary because they 
allow propagation of waves in all directions and also 
employ a central-difference scheme that requires 
knowledge of the fields one half-cell to each side of the 
point where the central-difference approximations are 
applied. Hence, the basic equations used inside the 
numerical domain must be modified on the outer 
boundary. The most commonly used absorbing boundary 
conditions are the second-order condition derived by Mur 
[ I l l  and perfectly matched layer (PML) derived by 
Berenger [ 121. 

IV. 1-D FDTD FOR MULTICONDUCTOR 
TRANSMISSION LINE METHOD 

In this method, a finite-difference time-domain 
algorithm is applied to the multi-conductor transmission 
line (MTL) equations [13]-[14]. The voltages and currents 
on an n+l conductor MTL are described by the coupled 
partial differential equations 

( 5 )  
a a 
ax at 
-V( X ,  t )  + L- I (  X ,  t )  + RI = V “  (x, t )  

(6) 
a a 
ax at 

--Z(X, t )  + C-V(x ,  t )  + GV = Z’(X, t ) ,  

where V(x, t) and I(x, t )  are the column vectors of the n 
voltages and currents on the MTL, and V(x, t )  and P(x,  t )  
are the column vectors of the n distributed voltage and 
current sources produced by, for instance, an external 
electromagnetic field. The n x n matrices L, R, C and G 
are the per unit length inductance, resistance, capacitance, 
and conductance matrices describing the MTL. In order to 
mutually integrate the transmission line equations, we use 
the finite-difference technique. When the central- 
difference technique is used, the numerical solution 
results in the following equations: 

where the index i indicates the spatial location 
index n indicates the time location, and 

L J L 

[ U T ] =  [CGT]= [ y  [;I]. (10) E [:]I 
Note that V and I are always offset by one half of 

a time step and half of a spatial step. The finite-difference 
equation first advances all the currents on the 
transmission line one-time step based on the voltages at 
the previous time step. Then the voltages are advanced by 
using the currents that were just calculated. For stability 
of this scheme, one needs to ensure that: 

Ax 
A t < - - ,  

V 

where At is the time step, Ax is the spatial cell size, and v 
is the velocity of propagation on the line. This criterion is 
usually referred to as the Courant stability condition and 
essentially states that the numerical speed of propagation 
must exceed the physical speed of propagation. Note that 
there are no radiation effects captured from the I-D 
FDTD formulation. 

v. METHOD OF MOMENTS 

The Method of Moments (MOM) is essentially the 
method of weighted residuals [5], which can be used for 
solving both differential and integral equations. The use 
of MOM in electromagnetics (EM) has become popular 
since the work of Richmond [15] in 1965 and Harrington 
[16] in 1967. The method has been successfully applied to 
wide variety of EM problems of practical interest such as 
radiation due to thm-wire elements and arrays, scattering 
problems, and the analysis of microstrip and lossy 
structures. 
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The procedure for applying MOM to 
electromagnetic problems usually involves four steps: 

Solving the matrix equation and obtaining the 

Derivation of the appropriate integral equation 
Conversion (discretization) of the integral equation 
into a matrix equation 
Evaluation of the matrix elements, and 

parameters of interest. 

VI. FINITE-ELEMENT METHOD 

The finite-element method has its origin in the field 
of structural analysis. Although the earlier mathematical 
treatment of the method was provided by Courant [17] in 
1943, the method was not applied to electromagnetic 
problems until 1968. Although MOM and FDTD 
techniques are conceptually simpler and easier to 
implement numerically, the FEM is a more versatile and 
powerful technique for handling problems involving 
complex geometries and inhomogeneous media. The 
starting point of the finite-element method ( E M )  is the 
subdivision of the domain into small sub-domains called 
elements. Although the elements need not be triangles, 
those subdivisions are called a triangulation. An element 
is described by its vertices and one point on each edge. 
These points are called the nodes. The FEM mesh is 
constituted by its nodes and the elements. Equilateral 
triangles (or tetrahedra) work best for the 2"d-order 
interpolation functions between nodes. The approximation 
is calculated on the nodes of the elements, which is 
sufficient to approximate the fields at any point. The 
problem is to find the values of the solution 
approximation at the nodes of the FEM mesh from the 
given PDE. Thus, the original boundary-value problem 
with an infinite number of degrees of freedom is 
converted into a problem with a finite number of degrees 
of freedom; or in other words, the solution of the whole 
system is approximated by a finite number of unknown 
coefficients. The basic steps are: 

0 

Discretization or subdivision of the domain 
Selection of the interpolation functions 
Formulation of the system of equations 
Solution of the system of equations. 

VII. NUMERICAL MODELING AND RESULTS 

The FDTD method was first used to model the 
meander delay line. A uniform grid with cells of 
dimension Ax = Ay = Az. = 0.25 mm was used. The 
dimension was chosen to give a cell resolution of 
approximately 95 cells per wavelength at the highest 

frequency corresponding to the rise time of the source 
waveform. The substrate was modeled as a dielectric with 
relative permittivity of 4.5 and dimensions 26 mm x 26 
mrn X 1 mm. The meander line was placed over the 
dielectric and a ground plane on its other side. Overall, 
the computational space was 104 x 104 x 20 cells, for 
216320 total cells. The time step was 4.13 x 
seconds. The computational domain was truncated using 
PML that was 8 cells deep. A source with a Gaussian 
rising and falling edge of 200 ps and a dwell time of 1 ns 
was used. The source has excitation frequency content up 
to 15 GHz. Both, the source line and the receiver line 
were truncated into the PML. The source and the 
receiving probes were placed 10 cells away from the PML 
to avoid ringing effects due to the PML. A total of 12000 
time steps were used in simulations. 

A similar approach was applied to the 1D-FDTD 
method. A resolution of 40 cells per wavelength at 15 
GHz was used. The source waveform used was similar to 
that used in the 3D-FDTD simulations. The right-angled 
bends were modeled using lumped elements. 

The same line was modeled in FEMa, FEMb, 
MoMa and M o m .  In FEM modeling, an air box of the 
dimension of 23 mm x 41 mm x 30 mm was created. The 
dielectric, of dimension 23 mm x 41 mm x 1 mm, was 
placed on the lower face of the air box, on which a perfect 
conductor boundary condition is defined. Thus the lower 
face acts a ground plane to the trace. The input and output 
traces run into the two opposite faces of the air box. These 
two faces are defined as the ports. In each port, a vertical 
impedance line is created between the center of the trace 
and the bottom of the ground plane. With an impedance 
line at the port, the voltage difference between the signal 
trace and the ground plane is determined by integrating 
the electric field along the line. Perfect conductor 
boundary conditions are defined on the traces by forcing 
the tangential electric field on the surface to equal zero. 
Radiation boundary conditions are defined on the 
remaining faces of the air box. The radiation boundaries 
model surfaces that represent free space. Electric and 
magnetic fields are allowed to travel through the 
boundaries instead of being contained within them. 

MOM solvers, being planar circuit full-wave 
solvers, can enable easier set-up of the meander line 
problem as compared to their FEM counterparts. The 
steps involved are: 

1. 
2. 

Creating a physical design of the meander line 
Defining the substrate characteristics, which included 
the number of layers in the substrate and the position 
of the layer of the meander line 
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3. Solving the substrate for a range of frequencies from 
1 to 15 GHz. This approximates the Green's function 
that characterizes the substrate for the specified range 
Specifying input and output ports on input and output 
lines, respectively. Each port was assigned a port 
impedance of 7 1 ohms. 

4. 
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The output waveforms obtained from the two 
FDTD methods are shown in Fig. 2 along with the output 
waveform from a straight line (non-meandered). The 
output waveform, delayed by the propagation time 
through the line, starts rising about 1 ns after the source 
pulse was launched. The agreement between the two 
results is in general good. The output wave arrives earlier 
than expected. This is due to the speed-up effects caused 
by the mutual coupling between the segments of the 
meander line. 
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Fig. 2. Output Voltages calculated by the two finite-difference time- 
domain methods 

In both the FEM and MOM codes, 30 cells per 
wavelength at 5 GHz, were used to discretize the meander 
line. The solutions were calculated in the frequency 
domain and converted to the time domain through 
appropriate inverse Fourier transforms. The results are 
plotted in Figs. 3 and 4. The results show good correlation 
with those obtained from the FDTD methods except that 
the FEM pulses arrive faster than the others. 

The magnitude of the reflection coefficient (SI1) 
generated by FDTD-3D, FEMb and MoMb methods are 
plotted in Fig. 5 for the frequencies between 0.5 and 5 
GHz. Again, the results are in good agreement with each 
other. From the plot, we can conclude that the meander 
line has good transmission characteristics below 
frequency of 3.1 GHz, but the performance deteriorates 
after that until around 4.4 GHz. From these observations, 
we concIude that, in addition to acting as a delay line, the 

meander line is well suited for filtering applications. This 
is true because the spacing and the number of segments 
control the pass-band comer frequencies and slopes, 
respectively. This is a well-known characteristic of 
periodic structures in general. 
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Fig. 3. Comparison of the output voltages 
calculated by I-D FDTD, FEMa, MoMa 

to the straight-line case 
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Fig. 4. Comparison of the output voltages 
calculated by3-D FDTD, =Ma, MoMa to the 

straight-line case 

The magnitude of total electric field 2 cm above 
the center of the board is shown in Fig. 6. The results 
obtained are in good agreement. The radiation at this 
point increases with frequency until 3.4 GHz and then 
decreases. 

The performance of the codes are compared in 
Table 1. Notice that all the full-wave approaches have 
approximately the same total run time, with the exception 
of that for the MoMb. 
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Fig. 5.  Comparison of SII  calculated by 
3D-FDTD, FEMb and MoMb 
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Fig. 6. Comparison of E-field magnitude at a point 2 cm above the 
meander line 

Table 1. Performance comparisons of FDTD, E M  and MOM 

Code 1 Size (MB) 1 Time(secs)per I TotalRun time 1 

VIII. CONCLUSION: 

A full-wave FDTD and a simplified 1D-FDTD 
model have been used to analyze meander delay line. 
Both models take into account the mutual coupling 
between the adjacent segments of the delay line, and also 
the right-angled bend effects. The results obtained were 
compared to those obtained by commercially available 
FEM and MOM solvers. In all cases the output waveform 

matched reasonably well. The subtle difference in results 
using the full-wave approaches is not fully understood 
and will be the topic of future investigation. The 
interesting result of the paper is that a simple 1-D 
transmission line could predict reasonably well the 
propagation characteristics of the meander line compared 
to the full-wave approaches. 
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2 Analysis and Results 
Initially, in order to validate both the FDTD and FEM calculations, an air-fled 
cavity-backed slot antennais analyzed. A three-dimensional (3-D) view of the cavity 
under consideration and a detailed description of the geometry is shown in Figure 1. 
In the experiment, the aperture antenna was mounted on a finite ground plane of 
dimensions 24 x 24 in. and the sharp edges were covered with absorbing material to 
reduce diffractions. Moreover, the input impedance of the same aperture mounted 
on an infinite ground plane was calculated in [l] using a hybridization of the FEM 
with the Moment Method (MM) and compared very well with measurements. It was 
also shown that the dimensions of the ground plane do not have a profound effect on 
the value of the input impedance. In the FDTD simulations, this aperture antenna 
was mounted on a 9 x 9 cm finite ground plane, which was chosen smaller than the 
one used in the measurements to avoid a large computational space. The cavity 
was excited using a voltage source with an internal resistance in order t o  reduce the 
computational time. Three different feed methods were used. In all tht! cases, the 
feeding probe was excited by a voltage source with R, equal to  50 ohms. In the f i s t  
case, the radius of the probe was not modeled (infinitely thin probe) and the c d  
size was 1.5 mm. In the second case, the radius was taken into account by using the 
thin-wire model and the cell size was 1.5 mm. Finally, in the third case, the cell size 
was 0.6 mm and the probe itself was discretized along with the rest of the geometry. 
Figure 2 illustrates the computed input resistance and reactance of the aperture 
antenna for the three different cases. Also, the FDTD calculations are compared 
with measurements and with the results based on the hybrid FEM/MoMformulation 
which were reported in [l]. Obviously, the accuracy of the FDTD results depends 
greatly on the wire modeling of the probe that excites the antenna. Excellent 
agreement between the FDTD computations and the measurements is observed in 
the case where the probe was discretized. The improvement in accuracy for the last 
case can be attributed to the finer discretization and the enhanced modeling of the 
probe. 

After, computing the input impedance of the cavity-backed slot antenna, the 
coupling between two identical cavity-backed slot antennas (whose specifications are 
defined in Figure 1) mounted on a square 9 x 9 cm ground plane was computed by 
FDTD and FEM and the results of the two methods compare very well (see Figure 3 
for the geometry specifications and the coupling calculations). The discrepancies at 
the higher end of the band can be attributed to  discretization errors. 

Furthermore, parametric studies of the coupling between the two cavity-backed 
slot antennas shown in Figure 4 were performed both numerically and experimen- 
tally; d denotes the separation between the two apertures of the antennas. A sample 
of these results is illustrated in Figures 5 and 6, where the measured coupling of the 
two antennas is plotted either versus frequency or separation. It is observed that 
the coupling between the two antennas diminishes at approximately the same rate 
as a function of aperture separation at  a given frequency. 
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Figure 1: Geometry of a cavity-backed slot antenna fed with a probe in the y 
direction. 

Figure 2: Impedance of a cavity-backed slot antenna (for antenna specifications see 
Figure 1). 

Figure 3: Coupling between two identical cavity-backed slot antennas mounted on 
a square ground plane (for antenna specifications see Figure 1). 
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Figure 4: Geometry of two identical cavity-backed slot antennas mounted on a 
square ground plane along with antenna specifications. 

Figure 5: Measured coupling between two cavity-backed slot antennas versus fre- 
quency (for antenna specifications see Figure 4). 

Figure 6: Measured coupling between two cavity-backed slot antennas versus aper- 
ture separation (for antenna specifications see Figure 4). 
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